Example 20 The number of terms in the expansion of $(a + b + c)^n$, where $n \in \mathbb{N}$ is

(A)
$$\frac{(n+1)(n+2)}{2}$$
 (B) $n+1$

(C)
$$n+2$$
 (D) $(n+1) n$

Solution A is the correct choice. We have

$$(a+b+c)^{n} = [a+(b+c)]^{n}$$

$$= a^{n} + {}^{n}C_{1} a^{n-1} (b+c)^{1} + {}^{n}C_{2} a^{n-2} (b+c)^{2}$$

$$+ \dots + {}^{n}C_{n} (b+c)^{n}$$

Further, expanding each term of R.H.S., we note that

First term consist of 1 term.

Second term on simplification gives 2 terms.

Third term on expansion gives 3 terms.

Similarly, fourth term on expansion gives 4 terms and so on.

The total number of terms = 1 + 2 + 3 + ... + (n + 1)

$$=\frac{(n+1)(n+2)}{2}$$